Worksheet #5

Name:		Period:	Seat#:	
Directions: Show all work when applicable.		Standard Reduction Potential	E° (volts)	
		$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36	
FILL IN THE BLANKS:		$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(1)$	+1.23	
	ENVINE BEAUTICS.	$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80	
1)	All of the equations in the chart above are written	$I_2(s) + 2e \rightarrow 2I(aq)$ $Cu^{2+}(aq) + 2e \rightarrow Cu(s)$	+0.535	
		$Cu^{-}(aq) + 2e \rightarrow Cu(s)$ $SO_4^{2-}(aq) + 4 H^{+}(aq) + 2e^{-} \rightarrow SO_2(g)$	+0.337) + 2 H ₂ O +0.20	
	as (oxidations/reductions).	$2 \text{ H}^{+}(\text{aq}) + 2 \text{ e}^{-} \rightarrow \text{H}_{2}(\text{g}) \text{ (reference e})$		
	· · · · · · · · · · · · · · · · · · ·	$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.828	
2)	The chamicals at the upper left (CL and O-) are	$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.714	
2)	The chemicals at the upper left (Cl ₂ and O ₂) are	$K^+(aq) + e^- \rightarrow K(s)$	-2.93	
	the most likely to be			
	the most likely to be			
	(oxidized/reduced) and therefore the best	(oxidizin	g agents/reducing agents).	
3)	The chemicals at the lower right (Na and K) are the most likely to be			
		•		
	(oxidized/reduced) and therefore the best (oxidizing agents/reducing agents/			
4)	In an electrolytic cell, the (–) electrode is negative because is has (too many/too to			
-,				
	electrons. Chemicals that come into contact with the (–) electrode will (gain/lose)			
	electrons and be (oxidized/reduced). The (-) electrode in electrolysis is called			
	the (cathode/anode).			
	(canode/anode).			
-\				
5)	Write the change that water goes through at the (-) electrode.			
6)	In an electrolytic cell, the (1) electrode is positive because in her			
O)	In an electrolytic cell, the (+) electrode is positive because is has			
	(too many/too few) electrons. Chemicals that come into contact with the (+) electrode will			
	(resignates) electrons and he			
	(gain/lose) electrons and be (oxidized/reduced). The (+) electrode in electrolysis is			
	called the (cathode/anode).			
7)	Write the change that water goes through at the (+) electrode.			
- ,	write the change that water goes through at the (+) electrode.			
8) Add these two reactions together (make certain the electrons cancel) and write the overa			the overall reaction	
	for the electrolygic of water			
	for the electrolysis of water.			
9)	We will perform this electrolysis using an aqueous solution of sodium sulfate. Both the Na ⁺ and H₂O			
,				
	will be near the (-) electrode. Which chemical is mo	ore likely to be reduced?		
10) Both the SO_4^{2-} and H_2O will be near the (+) electrod	de. Which chemical will be o	oxidized?	

Dougherty Valley HS Chemistry - AP Electrochemistry - Electrolysis

11) In the electrolysis of KI(aq)	1 NAMES TO THE PROPERTY OF THE			
	Both the K ⁺ and H ₂ O will be near the (-) electrode. Which chemical is more likely to be reduced?			
	Both the I ⁻ and H ₂ O will be near the (+) electrode. Which chemical is more likely to be oxidized?			
Write the reactions at each electrode and the Cathode	Write the reactions at each electrode and the overall reaction: Cathode Anode			
Overall				
12) In the electrolysis of CuSO ₄ (aq)				
Both the Cu ²⁺ and H ₂ O will be near the (-) ele	ectrode. Which chemical will be reduced?			
Both the SO ₄ ²⁻ and H ₂ O will be near the (+) electrode. Which chemical will be oxidized?				
Write the reactions at each electrode and the overall reaction:				
Cathode	Anode			
Overall				
Overall				
13) Silver plating occurs when electrolysis of a Ag ₂ SO ₄ solution is used because silver metal is formed at the				
(cathode/anode). This	s is the (+/-) electrode. The reaction at this			
electrode is:				
Recall that 1 amp•sec = 1 Coulomb and 96,500 Coulombs = 1 mole e-'s (Faraday's constant).				
If a cell is run for 200. Seconds with a current of 0.250 amps, how many grams of Ag ⁰ will be deposited?				